HW8 , Math 531, Spring 2014

Ayman Badawi

QUESTION 1. Prove that Z_{48} is ring isomorphic to $Z_{3} \times Z_{16}$.
QUESTION 2. assume that I, J, K are ideals of R and $I=J \cup K$. Prove that $I=K$ or $I=J$
QUESTION 3. Let $R=Z[\sqrt{10}]=\{a+b \sqrt{10}\}$. Then R is an integral domain (You do not need to prove this, but if you need to know why? just observe that R is a subring of \mathbb{R} (the set of real numbers)).
(i) Prove that $2,3,4+\sqrt{10}, 4-\sqrt{10}$ are irreducible elements of R.
(ii) Prove that $2,3,4+\sqrt{10}, 4-\sqrt{10}$ are not prime elements of R.
(iii) Prove that R is not a unique factorization domain. [Hint: observe that $6=2 \cdot 3$ and $6=(4-\sqrt{10})(4+\sqrt{10})$], or just observe that since some irreducible elements of R are not prime elements, then R cannot be a UFD]

QUESTION 4. Let $n<\infty$ and R be a commutative ring with 1. Suppose that P_{1}, \ldots, P_{n} are distinct prime ideals of R and I is a proper ideal of R such that $I \subseteq \cup_{i=1}^{n} P_{i}$. Prove that $I \subseteq P_{k}$ for some $1 \leq k \leq n$. [Hint: Let m be the least integer, $1 \leq m \leq n$ such that $I \subseteq \cup_{i=1}^{m} P_{i}$. If $m=1$, then you are done. Hence assume that $2 \leq m \leq n$. Then for each $1 \leq k \leq m$, there is an $a_{k} \in I \backslash \cup_{i=1, i \neq k}^{m} P_{i}$. Now let $x=a_{1}+a_{2} a_{3} \cdots a_{m}$. Clearly $x \in I$. Show $x \notin \cup_{i=1}^{m} P_{i}$, a contradiction.]

QUESTION 5. Let R and S are commutative rings with one.
(i) Let $I \subseteq J$ be proper ideals of R. Prove that $\frac{J}{I}$ is a prime ideal of R / I if and only if J is a prime ideal of R.
(ii) Let f be a ring epimorphism from R onto S, and $\operatorname{ker}(f) \subseteq J$ be proper ideals of R. Prove that $f(J)$ is a prime ideal of S if and only if J is a prime ideal of R.
(iii) Let f be a ring epimorphism from R onto S. Let D be a prime ideal of S. Prove that $D=f(L)$ for some prime ideal L of R such that $\operatorname{Ker}(f) \subseteq L$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

